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Abstract—Cloud storage services have become 

commercially popular due to their overwhelming advantages. 

To provide ubiquitous always-on access, a cloud service 

provider (CSP) maintains multiple replicas for each piece of 

data on geographically distributed servers. A key problem of 

using the replication technique in clouds is that it is very 

expensive to achieve strong consistency on a worldwide 

scale. In this paper, we first present a novel consistency as 

a service (CaaS) model, which consists of a large data 

cloud and multiple small audit clouds. In the CaaS model, 

a data cloud is maintained by a CSP, and a group of users 

that constitute an audit cloud can verify whether the data 

cloud provides the promised level of consistency or not. We 

propose a two-level auditing architecture, which only requires 

a loosely synchronized clock in the audit cloud. Then, we 

design algorithms to quantify the severity of violations with 

two metrics: the commonality of violations, and the staleness 

of the value of a read. Finally, we devise a heuristic 

auditing strategy (HAS) to reveal as many violations as 

possible. Extensive experiments were performed using a 

combination of simulations and a real cloud deployment to 

validate HAS. 
 
Index Terms—Cloud storage, consistency as a service (CaaS), 
two-level auditing, heuristic auditing strategy (HAS). 
 

 

I. Introduction 
Cloud computing has become commercially popular, as it 
promises to guarantee scalability, elasticity, and high 
availability at a low cost. Guided by the trend of the 
everything-as-a-service (XaaS) model, data storages, 
virtualized infrastructure, virtualized platforms, as well as 
software and applications are being provided and consumed 
as services in the cloud. Cloud storage services can be 
regarded as a typical service in cloud computing, which 
involves the delivery of data storage as a service, including 
database-like services and network attached storage, often 
billed on a utility computing basis, e.g. per gigabyte per 
month. Examples include Amazon SimpleDB1, Microsoft 
Azure storage2, and so on. By using the cloud storage 
services, the customers can access data stored in a cloud 
anytime and anywhere, using any device, without caring 
about a large amount of capital investment when deploying 
the underlying hardware infrastructures. To meet the 

promise of ubiquitous 24/7 access, the cloud service 
provider (CSP) stores data replicas on multiple geo 
graphically distributed servers. A key problem of using the 
replication technique in clouds is that it is very expensive 
to achieve strong consistency on a worldwide scale, where 
a user is ensured to see the latest updates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

 

Fig.1 An application that requires causal Consistency 

 

Actually, mandated by the CAP principle3, many CSPs 

(e.g., Amazon S3) only ensure weak consistency, such as  

eventual consistency, for performance and  high  availability, 

where  a  user  can  read stale  data for a  period of  time. 

The domain name system (DNS) is one of the most popular 

applications that implement eventual consistency. Updates to 

a name will not be visible immediately, but all clients are 

ensured to see them eventually. 

However, eventual consistency is not a catholicon for all 

applications. Especially for the interactive applications, 

stronger consistency assurance is of increasing importance. 

Consider the following scenario as shown in Fig. 1. Suppose 

that Alice and Bob are cooperating on a project using a 

cloud storage service, where all of the related data is 

replicated to five cloud servers, CS1,  C S5. 

After uploading a new version of the requirement analysis to 

a CS4, Alice calls Bob to download the latest version for 

integrated design. Here, after Alice calls Bob, the causal 

relationship is established between Alice’s update and Bob’s 

read. Therefore, the cloud should provide causal consistency, 
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which ensures that Alice’s update is committed to all of the 

replicas before Bob’s read. If the cloud provides only 

eventual consistency, then Bob is allowed to access an old 

version of the requirement analysis from CS5. In this case, the 

integrated design that is based on an old version may not 

satisfy the real requirements of customers. 
Actually, different applications have different consistency 
requirements. For example, mail services need monotonic- 
read consistency and read-your-write consistency, but social 
network services need causal consistency. In cloud storage, 
consistency not only determines correctness but also the 
actual cost per transaction. In this paper, we present a novel 
consistency as a service (CaaS) model for this situation. The 
CaaS model consists of a large data cloud and multiple small 
audit clouds. The data cloud is maintained by a CSP, and an 
audit cloud consists of a group of users that cooperate on a 
job, e.g. a document or a project. A service level agreement 
(SLA) will be engaged between the data cloud and the audit 
cloud, which will stipulate what level of consistency the data 
cloud should provide, and how much (monetary or otherwise) 
will be charged if the data cloud violates the SLA. 
The implementation of the data cloud is opaque to all users 
due to the virtualization technique. Thus, it is hard for the users 
to verify whether each replica in the data cloud is the latest 
one or not. Inspired by the solution in, we allow the users in 
the audit cloud to verify cloud consistency by analysing a 
trace of interactive operations. Unlike their work, we do 
not require a global clock among all users for total ordering 
of operations. A loosely synchronized clock is suitable for 
our solution. Specifically, we require each user to maintain a 
logical vector for partial ordering of operations, and we adopt 
a two-level auditing structure: each user can perform local 
auditing independently with a local trace of operations; 
periodically, an auditor is elected from the audit cloud to 
perform global auditing with a global trace of operations. 
Local auditing focuses on monotonic-read and read-your-write 
consistencies, which can be performed by a light-weight online 
algorithm. Global auditing focuses on causal consistency, 
which is performed by constructing a directed graph. If the 
constructed graph is a directed acyclic graph (DAG), we claim 
that causal consistency is preserved. We quantify the severity 
of violations by two metrics for the CaaS model: commonality 
of violations and staleness of the value of a read, as in [9]. 
Finally, we propose a heuristic auditing strategy (HAS) which 
adds appropriate reads to reveal as many violations as possible. 
Our key contributions are as follows: 

1)  We  present a  novel  consistency as  a  service  (CaaS) 

model, where a group of users that constitute an audit 

cloud can verify whether the data cloud provides 

the promised level of consistency or not. 

2)  We propose a two-level auditing structure, which only 

requires a loosely synchronized clock for ordering 

operations in an audit cloud. 

3)  We design algorithms to quantify the severity of 

violations with different metrics. 

4)  We devise a heuristic auditing strategy (HAS) to reveal as 

many violations as possible. Extensive experiments were 

performed using a combination of simulations and a real 

cloud deployment to validate HAS. 

The remainder of this paper is organized as follows: We 

introduce related work in Section II and present preliminaries 

in Section III.  We describe verification algorithms for the 

two-level auditing structure in Section IV, before we provide 

algorithms to quantify the severity of violations in Section 

V. After we propose a heuristic auditing strategy to reveal as 

many violations as possible in Section VI, we conduct 

experiments to validate the heuristic auditing strategy in 

Section VII. Finally, we provide additional discussion in 

Section VIII and conclude this paper in Section IX. 

 

II. RELATED WORK 

A cloud is essentially a large-scale distributed system 

where each piece of data is replicated on multiple 

geographically- distributed servers to achieve high 

availability and high performance. Thus, we first review the 

consistency models in distributed systems. As a standard 

textbook, proposed two classes of consistency models: data-

centric consistency and client-centric consistency. Data-

centric consistency model considers the  internal state  of  a  

storage  system,  i.e. how updates flow through the  system  

and  what  guarantees the system can provide with respect 

to updates. However, to a customer, it really does not matter 

whether or not a storage system internally contains any 

stale copies. As long as no stale data is observed from 

the client’s point of view, the customer is satisfied. 

Therefore, client-centric consistency model concentrates on 

what specific customers want, i.e., how the customers 

observe data updates. Their work also describes different 

levels of consistency in distributed systems, from strict 

consistency to weak consistency. High consistency implies 

high cost and reduced availability. States that strict 

consistency is never needed in practice, and is even 

considered harmful. In reality, mandated by the CAP 

protocol many distributed systems sacrifice strict 

consistency for high availability. 

 

Then, we review the work on achieving different levels of 

Consistency in a cloud investigated the consistency 

properties provided by commercial clouds and made several 

useful observations. Existing commercial clouds usually re- 

strict strong consistency guarantees to small datasets 

(Google’s Megastore and Microsoft’s SQL Data Services), 

or provide only eventual consistency (Amazon’s simpleDB 

and Google’s BigTable) described several solutions to  

achieve different levels of consistency while deploying 

database applications on Amanzon S3. In the consistency 

requirements vary over time depending on actual 

availability of the data, and the authors provide 

techniques that make the system dynamically adapt to the 

consistency level by monitoring the state of the data. 

Proposed a novel consistency model that allows it to 

automatically adjust the consistency levels for different 

semantic data. 

Finally, we review the work on verifying the levels of 
consistency provided by the CSPs from the users’ point of 
view.  Existing solutions can be classified into trace-based 
verifications and benchmark-based verifications. Trace-based 
verifications focus on three consistency semantics: safety, 
regularity, and atomicity, which are proposed by Lamport and 
extended by Aiyer et al. A register is safe if a read that is not 
concurrent with any write returns the value of the most recent 
write, and a read that is concurrent with a write can return 
any value. A register is regular if a read that is not 
concurrent with any write returns the value of the most 
recent write, and a read that is concurrent with a write 
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returns either the value of the most recent write, or the value 
of the concurrent write. 

 

 

 
Fig 2. Consistency as a service model. 

 

A register is atomic if every read returns the value of the 

most recent write. Misra is the first to present an algorithm 

for verifying whether the trace on a read/write register is 

atomic. Following his work, proposed offline algorithms for 

verifying whether a key-value storage system has safety, 

regularity, and atomicity properties by constructing a directed 

graph. Proposed an online verification algorithm by using 

the GK algorithm and used different metrics to quantify the 

severity of violations. The main weakness of the existing 

trace-based verifications is that a global clock is required 

among all users. Our solution belongs to trace-based 

verifications. However, we focus on different consistency 

semantics in commercial cloud systems, where a loosely 

synchronized clock is suitable for our solution. 

Benchmark-based verifications focus on benchmarking 

staleness in a storage system. Both and evaluated consistency 

in Amazon’s S3, but showed different results. used only one 

user to read data in the experiments, and showed that few 

inconsistencies exist in S3. Used multiple geographically-

distributed users to read data, and found that S3 frequently 

violates monotonic-read consistency. The results of justify 

our two-level auditing structure. Presents a client-centric 

benchmarking methodology for understanding eventual 

consistency in distributed key- value storage systems. 

Assessed Amazon, Google, and Microsoft’s offerings, and 

showed that, in Amazon S3, consistency was sacrificed and 

only a weak consistency level known as, eventual consistency 

was achieved. 

 

III. PRELIMINARIES 

In this section, we first illustrate the consistency as a service 

(CaaS) model. Then, we describe the structure of the user 

operation table (UOT), with which each user records his 

operations. Finally, we provide an overview of the two-level 

auditing structure and related definitions. 
 

A. Consistency as a Service (CaaS) Model 

As shown in Fig. 2, the CaaS model consists of a data cloud 
and multiple audit clouds. The data cloud, maintained by 

the cloud service provider (CSP), is a key-value data storage 

system where each piece of data is identified by a unique key. 

To provide always-on services, the CSP replicates all of the 

data on multiple geographically distributed cloud servers. An 

audit cloud consists of a group of users that cooperate on a 

job, e.g., a document or a program. We assume that each user 

in the audit cloud is identified by a unique ID. Before 

outsourcing the job to the data cloud, the audit cloud and the 

data cloud will engage in a service level agreement (SLA), 

which stipulates the promised level of consistency that should 

be provided by the data cloud. The audit cloud exists to verify 

whether the data cloud violates the SLA or not, and to quantify 

the severity of violations. 

In our system, a two-level auditing model is adopted: each 

user records his operations in a user operation table (UOT), 

which is referred to as a local trace of operations in this paper. 

Local auditing can be performed independently by each user 

with his own UOT; periodically, an auditor is elected from the 

audit cloud. In this case, all other users will send their UOTs 

to the auditor, which will perform global auditing with a 

global trace of operations. We simply let each user become an 

auditor in turn, and we will provide a more comprehensive 

solution in Section VIII. The dotted line in the audit cloud 

means that users are loosely connected. That is, users will 

communicate to exchange messages after executing a set of 

reads or writes, rather than communicating immediately after 

executing every operation. Once two users finish 

communicating, a causal relationship on their operations is 

established. 

 

B. User Operation Table (UOT) 

Each user maintains a UOT for recording local operations. 

Each record in the UOT is described by three elements: 

operation, logical vector, and physical vector. While 

issuing an operation, a user will record this operation, as 

well as his current logical vector and physical vector, in his 

UOT. 

Each operation op is either a write W (K, a) o r  a read 

R (K, a), where W (K, a) means writing the value as to 

data that is identified by key K, and R (K, a) means 

reading data that is identified by key K and whose value is 

a. As in [7], we call W (K, a) as R (K, a)’s dictating 

write, and R (K, a) as W (K, a)’s dictated read. We assume 

that the value of each write is unique. This is achieved by 

letting a user attach his ID, and current vectors to the value 

of write. Therefore, we have the following properties: (1) a 

read must have a unique dictating write. A write may have 

zero or more dictated reads. (2) From the value of a read, we 

can know the logical and physical vectors of its dictating 

write. 

 

C. Overview of Two-Level Auditing Structure 

Vogel’s investigated several consistency models provided 

by commercial cloud systems. Following their work, we 

provide a two-level auditing structure for the CaaS model. At 

the first level, each user independently performs local auditing 

with his own UOT. The following consistencies (also referred 

to as local consistencies) should be verified at this level: 
 

Monotonic-read consistency. If a process reads the value of 

data K, any successive reads on data K by that process will 

always return that same value or a more recent value. 
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Read-your-write consistency. The effect of a write by a 

process on data K will always be seen by a successive read 

on data K by the Read-your-write consistency. The effect of 

a write by a process on data K will always be seen by a 

successive read on data K by the same process. 

Causal consistency. Writes that are causally related must be 

seen by all processes in the same order. 

Concurrent writes may be seen in a different order on 

different machines. 
 

IV. VE RIFICATION OF CONSISTENCY 

PROPERTIE S 
In this section, we first provide the algorithms for the two- 

level auditing structure for the CaaS model, and then analyze 

their effectiveness. Finally, we illustrate how to perform a 

garbage collection on UOTs to save space. Since the accesses 

of data with different keys are independent of each other, a 

user can group operations by key and then verify whether 

each group satisfies the promised level of consistency. In the 

remainder of this paper, we abbreviate read operations with R 

(a) and write operations with W (a). 
 

 
A. Local Consistency Auditing 

Local consistency auditing is an online algorithm (Alg. 1). In 

Alg. 1, each user will record all of his operations in his UOT. 

While issuing a read operation, the user will perform local 

consistency auditing independently. 

Let R(a)  denote a user’s current read whose dictating write is 

W (a),  W (b) denote the last write in the UOT, and R(c) 

denote the last read in the UOT whose dictating write is W 

(c). Read-your-write consistency is violated if W (a)   

happens before W (b), and monotonic-read consistency is 

violated if W (a) happens before W (c).  Note that, from the 

value of a read, we can know the logical vector and physical 

vector of its dictating write. Therefore, we can order the 

dictating writes by their logical vectors. 
 

 
B. Global Consistency Auditing 

Global consistency auditing is an offline algorithm 

periodically; an auditor will be elected from the audit cloud 

to perform global consistency auditing. In this case, all other 

users will send their UOTs to the auditor for obtaining a 

global trace of operations.  

 

 

C. Effectiveness 
The effectiveness of the local consistency auditing algorithm 

is easy to prove. For monotonic-read consistency, a user is 

required to read either the same value or a newer value. 

There- fore, if the dictating write of a new read happens 

before the dictating write of the last read, we conclude that 

monotonic- read consistency is violated. For read-your-write 

consistency, the user is required to read his latest write. 

Therefore, if the dictating write of a new read happens before 

his last write, we conclude that read-your-write consistency is 

violated. 

 

D. Garbage Collection 

In the auditing process, each user should keep all operations 

in his UOT. Without intervention, the size of the UOT would 

grow without bound. Furthermore, the communication cost 

for transferring the UOT to the auditor will be excessive. 

Therefore, we should provide a garbage collection 

mechanism which can delete unneeded records, while 

preserving the effectiveness of auditing. 

 

V. QUANTIFYING SEVERITY OF 

VIOLATIONS 
As we provide two metrics to quantify the severity of 

violations for the CaaS model: commonality and staleness. 

Commonality quantifies how often the violations happen. 

Staleness  quantifies how  much  older  the  value  of  a  read 

is  compared  to  that  of  the  latest  write.  Staleness can be 

further classified into time-based staleness and operation- 

based staleness, where the former counts the passage of time, 

and the latter counts the number of intervening operations, 

between the read’s dictating write and the latest write. 

 

VI. HEURISTIC AUDIT ING STRATEGY 
From the auditing process in the CaaS model, we observe that 

only reads can reveal violations by their values. Therefore, 

the basic idea of our heuristic auditing strategy (HAS) is to 

add appropriate reads for revealing as many violations as 

possible. We call these additional reads auditing reads. 

HAS divides physical time into L timeslice, where l timeslice 

constitute an interval. Each timeslice is associated with a 

state, which can be marked with either normal or abnormal. 

A normal state means that there is no consistency violation, 

and an abnormal state means that there is one violation in this 

timeslice. 

HAS determines the number of auditing reads in the (i +1)- th 

interval, based on the number of abnormal states in the i-th 

interval. Let ni denote the number of auditing reads in 

interval i. HAS determines ni+1, which is the number of 

auditing reads in the next interval with Eq. 1: 

 ni+1 = min(l, k × ni ),    ni ≥ α        (1) 

ni+1  = max(1, 1  × ni ),     ni  < α  

where k is a parameter that is used to adjust the value of ni+1, 

l is the number of time slices in an interval, and α is a 

threshold value that is used to determine whether the number 

of auditing reads in the next round should be increased by k 

times or be reduced to 1/k, compared to the number of 

auditing reads in the current round. 

Specifically, given a threshold value α, if a user issues ni 

Auditing reads and reveals more than α violations in interval 

i,  in interval i + 1, the user will issue ni+1  = min(l, k ∗  

ni ) auditing reads; that is, each timeslice will be issued, at 
most, one auditing read, and the maximal number of 
auditing reads will not exceed l. Otherwise, the user will 
issue ni+1 = max(1, 1  × ni ) auditing reads, that is, each 
interval will be issued at least one auditing read. Since the 
number of auditing reads should be an integer, 1 × ni is 
actually the abbreviation of   1  × ni . 
 

 

VII. DISCUSSION 
In this section, we will discuss some additional issues about 

CaaS in terms of the election of an auditor and other 

consistency models. 

 

A. Election of an Auditor 

In section III, an auditor is simply elected from the auditor 

cloud in turn, where each user becomes the auditor with the 

same probability. However, different users have different 
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levels of ability in terms of available bandwidth, CPU, and 

Memory of clients. The users with a higher ability should 

have a higher probability of being selected as auditor. In this 

section, we provide a more comprehensive solution to elect an 

auditor as follows: We construct an ID ring for a group of 

users, where each node is associated with a node ID, and each 

user is denoted by a set of nodes in the ring. Suppose the 

number of nodes in the ring is n. To elect an auditor, we can 

randomly generate a number r, and let the user who is denoted 

by the node with an ID of (r   mod n) in the ring to be the 

auditor. Note that the selection of each user does not have to 

be uniform. The number of nodes associated with a user can 

be determined by his abilities, e.g., the capability of his client, 

his trusted rank, and so on. In this way, the probability of a 

user with a higher ability of being chosen as the auditor 

becomes higher. For example, given 3 users and 6 nodes, user 

Alice is denoted by 3 nodes, user Bob is denoted by 2 nodes, 

and user Clark is denoted by 1 node. Therefore, the 

probability of Alice being the auditor is 50%, for Bob it is 

33%, and for Clark it is 17%. 

 

B. Other Consistency Models 

In local auditing, we only consider two kinds of consistencies, 

i.e., monotonic-read consistency and read-your-write 

consistency. Now, we discuss other consistency models such 

as read-after-write consistency and monotonic-write 

consistency models. Read-after-write consistency requires 

that all clients immediately see new data. With read-after-

write consistency, a newly created object, file, or table row 

will immediately be visible, without any delays. Therefore, 

we can build distributed systems with less latency. Today, 

Amazon S3 provides read- after-write consistency in the EU 

and US-west regions. So far, it is hard to achieve read-after-

write consistency in a world- wide scale. 

Monotonic-write consistency requires that a write on a copy 
of data item x is performed only if that copy has been 
updated by any preceding write operations that occurred in 
other copies. However, monotonic-write is not always 
necessary for all applications. For example, the value of x is 
first set to 4 and, later on, is changed to 7. The value 4 that 
has been overwritten isn’t really important. 
 

IX.CONCLUSION 

In  this  paper,  we  presented  a  consistency  as  a  service 

(CaaS) model and a two-level auditing structure to help users 

verify whether the cloud service provider (CSP) is providing 

the  promised  consistency, and  to  quantify  the  severity  of 

the violations, if any. With the CaaS model, the users can 

assess the quality of cloud services and choose a right CSP 

among various candidates, e.g., the least expensive one that 

still provides adequate consistency for the users’ applications. 

For our future work, we will conduct a thorough theoretical 

study of consistency models in cloud computing. 
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