
 KDK College of Engineering, Nagpur

SPARK’15- XI
th

 National Conference on Engineering Technology Trends in Engineering

Consistency as a Service:

Auditing Cloud Consistency
Mr. Rupesh Chhatrapal Bichwe

M.Tech (CSE), Nuva college of Engineering & Technology,

 University of Nagpur (RTMNU), Maharashtra, India

 bichwerupesh@yahoo.com

Abstract—Cloud storage services have become

commercially popular due to their overwhelming advantages.

To provide ubiquitous always-on access, a cloud service

provider (CSP) maintains multiple replicas for each piece of

data on geographically distributed servers. A key problem of

using the replication technique in clouds is that it is very

expensive to achieve strong consistency on a worldwide

scale. In this paper, we first present a novel consistency as

a service (CaaS) model, which consists of a large data

cloud and multiple small audit clouds. In the CaaS model,

a data cloud is maintained by a CSP, and a group of users

that constitute an audit cloud can verify whether the data

cloud provides the promised level of consistency or not. We

propose a two-level auditing architecture, which only requires

a loosely synchronized clock in the audit cloud. Then, we

design algorithms to quantify the severity of violations with

two metrics: the commonality of violations, and the staleness

of the value of a read. Finally, we devise a heuristic

auditing strategy (HAS) to reveal as many violations as

possible. Extensive experiments were performed using a

combination of simulations and a real cloud deployment to

validate HAS.

Index Terms—Cloud storage, consistency as a service (CaaS),
two-level auditing, heuristic auditing strategy (HAS).

I. Introduction
Cloud computing has become commercially popular, as it
promises to guarantee scalability, elasticity, and high
availability at a low cost. Guided by the trend of the
everything-as-a-service (XaaS) model, data storages,
virtualized infrastructure, virtualized platforms, as well as
software and applications are being provided and consumed
as services in the cloud. Cloud storage services can be
regarded as a typical service in cloud computing, which
involves the delivery of data storage as a service, including
database-like services and network attached storage, often
billed on a utility computing basis, e.g. per gigabyte per
month. Examples include Amazon SimpleDB1, Microsoft
Azure storage2, and so on. By using the cloud storage
services, the customers can access data stored in a cloud
anytime and anywhere, using any device, without caring
about a large amount of capital investment when deploying
the underlying hardware infrastructures. To meet the

promise of ubiquitous 24/7 access, the cloud service
provider (CSP) stores data replicas on multiple geo
graphically distributed servers. A key problem of using the
replication technique in clouds is that it is very expensive
to achieve strong consistency on a worldwide scale, where
a user is ensured to see the latest updates.

Fig.1 An application that requires causal Consistency

Actually, mandated by the CAP principle3, many CSPs

(e.g., Amazon S3) only ensure weak consistency, such as

eventual consistency, for performance and high availability,

where a user can read stale data for a period of time.

The domain name system (DNS) is one of the most popular

applications that implement eventual consistency. Updates to

a name will not be visible immediately, but all clients are

ensured to see them eventually.

However, eventual consistency is not a catholicon for all

applications. Especially for the interactive applications,

stronger consistency assurance is of increasing importance.

Consider the following scenario as shown in Fig. 1. Suppose

that Alice and Bob are cooperating on a project using a

cloud storage service, where all of the related data is

replicated to five cloud servers, CS1, C S5.

After uploading a new version of the requirement analysis to

a CS4, Alice calls Bob to download the latest version for

integrated design. Here, after Alice calls Bob, the causal

relationship is established between Alice’s update and Bob’s

read. Therefore, the cloud should provide causal consistency,

 KDK College of Engineering, Nagpur

SPARK’15- XI
th

 National Conference on Engineering Technology Trends in Engineering

which ensures that Alice’s update is committed to all of the

replicas before Bob’s read. If the cloud provides only

eventual consistency, then Bob is allowed to access an old

version of the requirement analysis from CS5. In this case, the

integrated design that is based on an old version may not

satisfy the real requirements of customers.
Actually, different applications have different consistency
requirements. For example, mail services need monotonic-
read consistency and read-your-write consistency, but social
network services need causal consistency. In cloud storage,
consistency not only determines correctness but also the
actual cost per transaction. In this paper, we present a novel
consistency as a service (CaaS) model for this situation. The
CaaS model consists of a large data cloud and multiple small
audit clouds. The data cloud is maintained by a CSP, and an
audit cloud consists of a group of users that cooperate on a
job, e.g. a document or a project. A service level agreement
(SLA) will be engaged between the data cloud and the audit
cloud, which will stipulate what level of consistency the data
cloud should provide, and how much (monetary or otherwise)
will be charged if the data cloud violates the SLA.
The implementation of the data cloud is opaque to all users
due to the virtualization technique. Thus, it is hard for the users
to verify whether each replica in the data cloud is the latest
one or not. Inspired by the solution in, we allow the users in
the audit cloud to verify cloud consistency by analysing a
trace of interactive operations. Unlike their work, we do
not require a global clock among all users for total ordering
of operations. A loosely synchronized clock is suitable for
our solution. Specifically, we require each user to maintain a
logical vector for partial ordering of operations, and we adopt
a two-level auditing structure: each user can perform local
auditing independently with a local trace of operations;
periodically, an auditor is elected from the audit cloud to
perform global auditing with a global trace of operations.
Local auditing focuses on monotonic-read and read-your-write
consistencies, which can be performed by a light-weight online
algorithm. Global auditing focuses on causal consistency,
which is performed by constructing a directed graph. If the
constructed graph is a directed acyclic graph (DAG), we claim
that causal consistency is preserved. We quantify the severity
of violations by two metrics for the CaaS model: commonality
of violations and staleness of the value of a read, as in [9].
Finally, we propose a heuristic auditing strategy (HAS) which
adds appropriate reads to reveal as many violations as possible.
Our key contributions are as follows:

1) We present a novel consistency as a service (CaaS)

model, where a group of users that constitute an audit

cloud can verify whether the data cloud provides

the promised level of consistency or not.

2) We propose a two-level auditing structure, which only

requires a loosely synchronized clock for ordering

operations in an audit cloud.

3) We design algorithms to quantify the severity of

violations with different metrics.

4) We devise a heuristic auditing strategy (HAS) to reveal as

many violations as possible. Extensive experiments were

performed using a combination of simulations and a real

cloud deployment to validate HAS.

The remainder of this paper is organized as follows: We

introduce related work in Section II and present preliminaries

in Section III. We describe verification algorithms for the

two-level auditing structure in Section IV, before we provide

algorithms to quantify the severity of violations in Section

V. After we propose a heuristic auditing strategy to reveal as

many violations as possible in Section VI, we conduct

experiments to validate the heuristic auditing strategy in

Section VII. Finally, we provide additional discussion in

Section VIII and conclude this paper in Section IX.

II. RELATED WORK

A cloud is essentially a large-scale distributed system

where each piece of data is replicated on multiple

geographically- distributed servers to achieve high

availability and high performance. Thus, we first review the

consistency models in distributed systems. As a standard

textbook, proposed two classes of consistency models: data-

centric consistency and client-centric consistency. Data-

centric consistency model considers the internal state of a

storage system, i.e. how updates flow through the system

and what guarantees the system can provide with respect

to updates. However, to a customer, it really does not matter

whether or not a storage system internally contains any

stale copies. As long as no stale data is observed from

the client’s point of view, the customer is satisfied.

Therefore, client-centric consistency model concentrates on

what specific customers want, i.e., how the customers

observe data updates. Their work also describes different

levels of consistency in distributed systems, from strict

consistency to weak consistency. High consistency implies

high cost and reduced availability. States that strict

consistency is never needed in practice, and is even

considered harmful. In reality, mandated by the CAP

protocol many distributed systems sacrifice strict

consistency for high availability.

Then, we review the work on achieving different levels of

Consistency in a cloud investigated the consistency

properties provided by commercial clouds and made several

useful observations. Existing commercial clouds usually re-

strict strong consistency guarantees to small datasets

(Google’s Megastore and Microsoft’s SQL Data Services),

or provide only eventual consistency (Amazon’s simpleDB

and Google’s BigTable) described several solutions to

achieve different levels of consistency while deploying

database applications on Amanzon S3. In the consistency

requirements vary over time depending on actual

availability of the data, and the authors provide

techniques that make the system dynamically adapt to the

consistency level by monitoring the state of the data.

Proposed a novel consistency model that allows it to

automatically adjust the consistency levels for different

semantic data.

Finally, we review the work on verifying the levels of
consistency provided by the CSPs from the users’ point of
view. Existing solutions can be classified into trace-based
verifications and benchmark-based verifications. Trace-based
verifications focus on three consistency semantics: safety,
regularity, and atomicity, which are proposed by Lamport and
extended by Aiyer et al. A register is safe if a read that is not
concurrent with any write returns the value of the most recent
write, and a read that is concurrent with a write can return
any value. A register is regular if a read that is not
concurrent with any write returns the value of the most
recent write, and a read that is concurrent with a write

 KDK College of Engineering, Nagpur

SPARK’15- XI
th

 National Conference on Engineering Technology Trends in Engineering

returns either the value of the most recent write, or the value
of the concurrent write.

Fig 2. Consistency as a service model.

A register is atomic if every read returns the value of the

most recent write. Misra is the first to present an algorithm

for verifying whether the trace on a read/write register is

atomic. Following his work, proposed offline algorithms for

verifying whether a key-value storage system has safety,

regularity, and atomicity properties by constructing a directed

graph. Proposed an online verification algorithm by using

the GK algorithm and used different metrics to quantify the

severity of violations. The main weakness of the existing

trace-based verifications is that a global clock is required

among all users. Our solution belongs to trace-based

verifications. However, we focus on different consistency

semantics in commercial cloud systems, where a loosely

synchronized clock is suitable for our solution.

Benchmark-based verifications focus on benchmarking

staleness in a storage system. Both and evaluated consistency

in Amazon’s S3, but showed different results. used only one

user to read data in the experiments, and showed that few

inconsistencies exist in S3. Used multiple geographically-

distributed users to read data, and found that S3 frequently

violates monotonic-read consistency. The results of justify

our two-level auditing structure. Presents a client-centric

benchmarking methodology for understanding eventual

consistency in distributed key- value storage systems.

Assessed Amazon, Google, and Microsoft’s offerings, and

showed that, in Amazon S3, consistency was sacrificed and

only a weak consistency level known as, eventual consistency

was achieved.

III. PRELIMINARIES

In this section, we first illustrate the consistency as a service

(CaaS) model. Then, we describe the structure of the user

operation table (UOT), with which each user records his

operations. Finally, we provide an overview of the two-level

auditing structure and related definitions.

A. Consistency as a Service (CaaS) Model

As shown in Fig. 2, the CaaS model consists of a data cloud
and multiple audit clouds. The data cloud, maintained by

the cloud service provider (CSP), is a key-value data storage

system where each piece of data is identified by a unique key.

To provide always-on services, the CSP replicates all of the

data on multiple geographically distributed cloud servers. An

audit cloud consists of a group of users that cooperate on a

job, e.g., a document or a program. We assume that each user

in the audit cloud is identified by a unique ID. Before

outsourcing the job to the data cloud, the audit cloud and the

data cloud will engage in a service level agreement (SLA),

which stipulates the promised level of consistency that should

be provided by the data cloud. The audit cloud exists to verify

whether the data cloud violates the SLA or not, and to quantify

the severity of violations.

In our system, a two-level auditing model is adopted: each

user records his operations in a user operation table (UOT),

which is referred to as a local trace of operations in this paper.

Local auditing can be performed independently by each user

with his own UOT; periodically, an auditor is elected from the

audit cloud. In this case, all other users will send their UOTs

to the auditor, which will perform global auditing with a

global trace of operations. We simply let each user become an

auditor in turn, and we will provide a more comprehensive

solution in Section VIII. The dotted line in the audit cloud

means that users are loosely connected. That is, users will

communicate to exchange messages after executing a set of

reads or writes, rather than communicating immediately after

executing every operation. Once two users finish

communicating, a causal relationship on their operations is

established.

B. User Operation Table (UOT)

Each user maintains a UOT for recording local operations.

Each record in the UOT is described by three elements:

operation, logical vector, and physical vector. While

issuing an operation, a user will record this operation, as

well as his current logical vector and physical vector, in his

UOT.

Each operation op is either a write W (K, a) o r a read

R (K, a), where W (K, a) means writing the value as to

data that is identified by key K, and R (K, a) means

reading data that is identified by key K and whose value is

a. As in [7], we call W (K, a) as R (K, a)’s dictating

write, and R (K, a) as W (K, a)’s dictated read. We assume

that the value of each write is unique. This is achieved by

letting a user attach his ID, and current vectors to the value

of write. Therefore, we have the following properties: (1) a

read must have a unique dictating write. A write may have

zero or more dictated reads. (2) From the value of a read, we

can know the logical and physical vectors of its dictating

write.

C. Overview of Two-Level Auditing Structure

Vogel’s investigated several consistency models provided

by commercial cloud systems. Following their work, we

provide a two-level auditing structure for the CaaS model. At

the first level, each user independently performs local auditing

with his own UOT. The following consistencies (also referred

to as local consistencies) should be verified at this level:

Monotonic-read consistency. If a process reads the value of

data K, any successive reads on data K by that process will

always return that same value or a more recent value.

 KDK College of Engineering, Nagpur

SPARK’15- XI
th

 National Conference on Engineering Technology Trends in Engineering

k

Read-your-write consistency. The effect of a write by a

process on data K will always be seen by a successive read

on data K by the Read-your-write consistency. The effect of

a write by a process on data K will always be seen by a

successive read on data K by the same process.

Causal consistency. Writes that are causally related must be

seen by all processes in the same order.

Concurrent writes may be seen in a different order on

different machines.

IV. VE RIFICATION OF CONSISTENCY

PROPERTIE S
In this section, we first provide the algorithms for the two-

level auditing structure for the CaaS model, and then analyze

their effectiveness. Finally, we illustrate how to perform a

garbage collection on UOTs to save space. Since the accesses

of data with different keys are independent of each other, a

user can group operations by key and then verify whether

each group satisfies the promised level of consistency. In the

remainder of this paper, we abbreviate read operations with R

(a) and write operations with W (a).

A. Local Consistency Auditing

Local consistency auditing is an online algorithm (Alg. 1). In

Alg. 1, each user will record all of his operations in his UOT.

While issuing a read operation, the user will perform local

consistency auditing independently.

Let R(a) denote a user’s current read whose dictating write is

W (a), W (b) denote the last write in the UOT, and R(c)

denote the last read in the UOT whose dictating write is W

(c). Read-your-write consistency is violated if W (a)

happens before W (b), and monotonic-read consistency is

violated if W (a) happens before W (c). Note that, from the

value of a read, we can know the logical vector and physical

vector of its dictating write. Therefore, we can order the

dictating writes by their logical vectors.

B. Global Consistency Auditing

Global consistency auditing is an offline algorithm

periodically; an auditor will be elected from the audit cloud

to perform global consistency auditing. In this case, all other

users will send their UOTs to the auditor for obtaining a

global trace of operations.

C. Effectiveness
The effectiveness of the local consistency auditing algorithm

is easy to prove. For monotonic-read consistency, a user is

required to read either the same value or a newer value.

There- fore, if the dictating write of a new read happens

before the dictating write of the last read, we conclude that

monotonic- read consistency is violated. For read-your-write

consistency, the user is required to read his latest write.

Therefore, if the dictating write of a new read happens before

his last write, we conclude that read-your-write consistency is

violated.

D. Garbage Collection

In the auditing process, each user should keep all operations

in his UOT. Without intervention, the size of the UOT would

grow without bound. Furthermore, the communication cost

for transferring the UOT to the auditor will be excessive.

Therefore, we should provide a garbage collection

mechanism which can delete unneeded records, while

preserving the effectiveness of auditing.

V. QUANTIFYING SEVERITY OF

VIOLATIONS
As we provide two metrics to quantify the severity of

violations for the CaaS model: commonality and staleness.

Commonality quantifies how often the violations happen.

Staleness quantifies how much older the value of a read

is compared to that of the latest write. Staleness can be

further classified into time-based staleness and operation-

based staleness, where the former counts the passage of time,

and the latter counts the number of intervening operations,

between the read’s dictating write and the latest write.

VI. HEURISTIC AUDIT ING STRATEGY
From the auditing process in the CaaS model, we observe that

only reads can reveal violations by their values. Therefore,

the basic idea of our heuristic auditing strategy (HAS) is to

add appropriate reads for revealing as many violations as

possible. We call these additional reads auditing reads.

HAS divides physical time into L timeslice, where l timeslice

constitute an interval. Each timeslice is associated with a

state, which can be marked with either normal or abnormal.

A normal state means that there is no consistency violation,

and an abnormal state means that there is one violation in this

timeslice.

HAS determines the number of auditing reads in the (i +1)- th

interval, based on the number of abnormal states in the i-th

interval. Let ni denote the number of auditing reads in

interval i. HAS determines ni+1, which is the number of

auditing reads in the next interval with Eq. 1:

 ni+1 = min(l, k × ni), ni ≥ α (1)

ni+1 = max(1, 1 × ni), ni < α

where k is a parameter that is used to adjust the value of ni+1,

l is the number of time slices in an interval, and α is a

threshold value that is used to determine whether the number

of auditing reads in the next round should be increased by k

times or be reduced to 1/k, compared to the number of

auditing reads in the current round.

Specifically, given a threshold value α, if a user issues ni

Auditing reads and reveals more than α violations in interval

i, in interval i + 1, the user will issue ni+1 = min(l, k ∗

ni) auditing reads; that is, each timeslice will be issued, at
most, one auditing read, and the maximal number of
auditing reads will not exceed l. Otherwise, the user will
issue ni+1 = max(1, 1 × ni) auditing reads, that is, each
interval will be issued at least one auditing read. Since the
number of auditing reads should be an integer, 1 × ni is
actually the abbreviation of 1 × ni .

VII. DISCUSSION
In this section, we will discuss some additional issues about

CaaS in terms of the election of an auditor and other

consistency models.

A. Election of an Auditor

In section III, an auditor is simply elected from the auditor

cloud in turn, where each user becomes the auditor with the

same probability. However, different users have different

 KDK College of Engineering, Nagpur

SPARK’15- XI
th

 National Conference on Engineering Technology Trends in Engineering

levels of ability in terms of available bandwidth, CPU, and

Memory of clients. The users with a higher ability should

have a higher probability of being selected as auditor. In this

section, we provide a more comprehensive solution to elect an

auditor as follows: We construct an ID ring for a group of

users, where each node is associated with a node ID, and each

user is denoted by a set of nodes in the ring. Suppose the

number of nodes in the ring is n. To elect an auditor, we can

randomly generate a number r, and let the user who is denoted

by the node with an ID of (r mod n) in the ring to be the

auditor. Note that the selection of each user does not have to

be uniform. The number of nodes associated with a user can

be determined by his abilities, e.g., the capability of his client,

his trusted rank, and so on. In this way, the probability of a

user with a higher ability of being chosen as the auditor

becomes higher. For example, given 3 users and 6 nodes, user

Alice is denoted by 3 nodes, user Bob is denoted by 2 nodes,

and user Clark is denoted by 1 node. Therefore, the

probability of Alice being the auditor is 50%, for Bob it is

33%, and for Clark it is 17%.

B. Other Consistency Models

In local auditing, we only consider two kinds of consistencies,

i.e., monotonic-read consistency and read-your-write

consistency. Now, we discuss other consistency models such

as read-after-write consistency and monotonic-write

consistency models. Read-after-write consistency requires

that all clients immediately see new data. With read-after-

write consistency, a newly created object, file, or table row

will immediately be visible, without any delays. Therefore,

we can build distributed systems with less latency. Today,

Amazon S3 provides read- after-write consistency in the EU

and US-west regions. So far, it is hard to achieve read-after-

write consistency in a world- wide scale.

Monotonic-write consistency requires that a write on a copy
of data item x is performed only if that copy has been
updated by any preceding write operations that occurred in
other copies. However, monotonic-write is not always
necessary for all applications. For example, the value of x is
first set to 4 and, later on, is changed to 7. The value 4 that
has been overwritten isn’t really important.

IX.CONCLUSION

In this paper, we presented a consistency as a service

(CaaS) model and a two-level auditing structure to help users

verify whether the cloud service provider (CSP) is providing

the promised consistency, and to quantify the severity of

the violations, if any. With the CaaS model, the users can

assess the quality of cloud services and choose a right CSP

among various candidates, e.g., the least expensive one that

still provides adequate consistency for the users’ applications.

For our future work, we will conduct a thorough theoretical

study of consistency models in cloud computing.

X.REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., “A view
of cloud computing,” Commun. ACM, vol. 53, no. 4, 2010.
[2]P. Mell and T. Grance, “The NIST definition of cloud computing
(draft),” NIST Special Publication 800-145 (Draft), 2011.

[3]E. Brewer, “Towards robust distributed systems,” in Proc. 2000
ACM PODC.
[4] “Pushing the CAP: strategies for consistency and
availability,”Computer, vol. 45, no. 2, 2012.
[5] M. Ahamad, G. Neiger,. Burns, P. Kohli and P. Hutto, “Causal

memory: definitions, implementation, and programming,”
Distributed Computing, vol. 9, no. 1, 1995.

[6] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen, “Don’t
settle
[7]E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie, “What

consistency does your key-value store actually provide,” in
Proc. 2010 USENIX HotDep.

[8]C. Fidge, “Timestamps in message-passing systems that preserve
the partial ordering,” in Proc. 1988 ACSC.

[9]W. Golab, X. Li, and M. Shah, “Analyzing consistency
properties

[10]A. Tanenbaum and M. Van Steen, Distributed Systems:
Principles and Paradigms. Prentice Hall PTR, 2002.

